Posted: July 4th, 2022

Answer all the question in PDF

ATTACHED FILE(S)

1. What is condensation and

what conditions are nec-

essary for condensation to

occur?

2. What is evaporation?

What conditions make it

more likely to occur?

3. When we say that air is

“saturated” what does that

mean?

4. What is humidity?

5. What is relative humidity?

How do we calculate the

relative humidity of the air?

6. What are the two ways

that we can increase or de-

crease the relative humidity

of air?

7. What does the term “dew

point temperature” mean?

How is the difference be-

tween the dew point and

air temperature related to

relative humidity?

8. What are the four main

cloud groups and their

types? Be able to recognize

them in the sky.

5. HUMIDITY, CONDENSATION, & CLOUDS

1/2

9. How can you distinguish

altostratus clouds from

cirrostratus?

10. What happens to the

general size of clouds as

they increase in altitude?

low

middle

high

PUTTING IT INTO PRACTICE PART 1:

THE ADIABATIC PROCESS

In this section, you will be calculating the air temperature as a parcel of air lifts up over a mountain range and

back down the other side.Assume that the parcel of air starts off with a temperature of 65° F at sea level and a

Dew-Point Temperature of 54° F.Dry Adiabatic Rate : 5.5° F for every 1,000 feet of elevation change.The rate

at which unsaturated air cools while lifting or warms while descending. Saturted (Wet) Adiabatic Rate: 3.3° F

for every 1,000 feet of elevation change.The rate at which saturated air COOLS.Warming air will never maintain

100% relative humidity, so you never use the saturated rate with warming air.

CACLCULATING THE TEMPERATURE OF A RISING PARCEL OF AIR:

1. If the dew point is 54° F and the air temperature is 65° F. At sea level (0ft) on the windward side of the mountain

in the diagram below, is the relative humidity of the air starting out at 100%?Why or why not?

2. Assume that this same air is forced upward by a mountain range.When it starts to rise to 1,000ft, will it cool at

the DRY or SATURATED adiabatic rate?

3. Using the rate that you chose from question 2, calculate the temperature change on the diagram below up to

2,000 feet.What is the temperature of the parcel of air at 2000 ft?

4. At 2,000 ft., is the relative humidity of the parcel of air 100%? Yes or No?

5. Above 2,000ft, will the rising air begin cooling at the DRY or SATURATED adiabatic rate?

6. On the diagram below, calculate the air temperature changes all the way up to 5,000 feet using the rate you

chose in question 5.What is the temperature at 5,000 ft?

0 ft65° F

1,000 ft

2,000 ft

3,000 ft

4,000 ft

5,000 ft

7. On the diagram to the right, finish calculating

the air temperature as it descends from 5,000 feet

back down to sea level (0ft).What is the tem-

perature at sea level on the leeward side of the

mountain?

HINT: If the air is forced to descend it will WARM

at the Dry Adiabatic Rate.

3/4

TYPES OF CLOUDS

low

middle

high

cl

o

u

d

s

o

f v

er

ti

ca

l d

ev

el

o

p

m

en

t

In the diagram below, draw in and

label the major cloud types.

1. The table to the right lists the total amount of water vapor air at

specific temperatures can “hold” (capacity).

Looking at the data, what general statement can you make about

the relationship between temperature and capacity?

2. What is the formula for calculating the relative humidity of air?

3. Suppose it is 40 degrees F outside and there is 2.88 g/kg of water

vapor in the air. Using the formula from question #2, calculate the

relative humitidy.(Write out all your calculations)

4. What would happen to the relative humidity of this parcel of air

if you warmed the air in the scenario above to 60 degrees?Assume

there is no change in the amount of water vapor (2.88g/kg). Calcu-

late how the relative humidity changed when the air warms to 60

degrees.

5. What is the dew point temperature of the air in this scenario?In

other words, at what temperature would this parcel of air reach

100% relative humidity?

4PUTTING IT INTO PRACTICE PART 2:

CALCULATING RELATIVE HUMIDITY

Relative Humidity: a percentage describing how close the air is to reaching saturation.

Saturation: when the air is at 100% relative humidity and can no longer hold any more water vapor

Dew Point:temperature at which a parcel of air reaches saturation (100%RH)

Capacity: the total amount of water vapor that air at a specific temperature can “hold”.

CALCULATING RELATIVE HUMIDITY

Temperature (F) Capacity (g/kg)

-40 0.12

-30 0.21

-20 0.35

-10 0.58

0 0.94

10 1.52

15 1.89

20 2.34

25 2.88

30 3.54

35 4.33

40 5.28

45 6.40

50 7.74

55 9.32

60 11.19

65 13.38

70 15.95

75 18.94

80 22.43

85 26.48

90 31.16

Question 1:

Question 2:

Question 3:

Question 4:

Question 6:

Question 5:

Question 7:

Question 11:

Question 8:

Question 9:

Practice 6:

Practice 7:

Practice 8:

Practice 9:

Practice 10:

Practice 11:

Practice 12:

Practice 3a 2:

Practice 13:

Practice 6a 2:

Practice 6b 2:

Practice 14:

Practice 7a 2:

Practice 7b 2:

Practice 7c 2:

Practice 7d 2:

Practice 15:

Practice 1:

Practice 2:

Practice 3:

Practice 4:

Practice 5:

Place an order in 3 easy steps. Takes less than 5 mins.